Shaking conditions required for flame structure formation in a water-immersed granular medium
نویسندگان
چکیده
Flame structures found in sedimentary rocks may have formed from liquefaction and gravitational instability when the sediments were still unconsolidated and were subject to shaking caused by earthquakes. However, the details of the process that leads to the formation of the flame structure, and the conditions required for the instability to initiate and grow remain unclear. Here, we conduct a series of small-scale laboratory experiments by vertically shaking a case containing a water-immersed layered granular medium. The upper granular layer consists of finer particles and forms a permeability barrier against the interstitial water which percolates upwards. We shake the case sinusoidally at different combinations of acceleration and frequency. We find that there is a critical acceleration above which the instability develops at the two-layer interface. This is because the upward percolating water temporarily accumulates beneath the permeability barrier. For larger acceleration, the instability grows faster and the plumes grow to form a flame structure, which however do not completely penetrate through the upper layer. We classify the experimental results according to the final amplitude of the instability and construct a regime diagram in the parameter space of acceleration and frequency. We find that above a critical acceleration, the instability grows and its amplitude increases. Moreover, we find that the critical acceleration is frequency dependent and is smallest at approximately 100 Hz. The frequency dependence of the critical acceleration can be interpreted from the combined conditions of energy and jerk (i.e., the time derivative of acceleration) of shaking, exceeding their respective critical values. These results suggest that flame structures observed in sedimentary rocks may be used to constrain the shaking conditions of past earthquakes.
منابع مشابه
Batch Study on COD and Ammonia Nitrogen Removal Using Granular Activated Carbon and Cockle Shells
Landfills generate leachate that contains elevated concentration of contaminants and is hazardous to human health and the ecosystem. In this study, the mixture of granular activated carbon and cockle shells was investigated for remediation of COD and ammonia from stabilized landfill leachate. All adsorbent media were sieved to a particle size between 2.00 and 3.35 mm. The optimum mixing ratio, ...
متن کاملFormation and Stabilization of Raphasatin and Sulforaphene from Radish Roots by Endogenous Enzymolysis
The biologically active compounds raphasatin and sulforaphene are formed during the hydrolysis of radishes by an endogenous myrosinase. Raphasatin is very unstable, and it is generated and simultaneously degraded to less active compounds during hydrolysis in aqueous media. This study determined the hydrolysis conditions to maximize the formation of raphasatin and sulforaphene by an endogenous m...
متن کاملInfluence of Compaction Condition on the Microstructure of a Non-Plastic Glacial Till
The influence of compaction water content on the structure has been well known forclayey soils, but has never been studied for granular materials. In this paper the structure of a nonplastictill and the effect of compaction moisture is investigated by means of water retention curvestudy, scanning electron microscopy and mercury intrusion porosimetry tests. The results show thatwhen compacted on...
متن کاملPreconcentration of Hg(II) with novel nano-Fe3O4- sorbents prior to determination by CVAAS
A novel, simple, sensitive and effective method has been developed for preconcentration of Hg(II) on nano-Fe3O4-DOP-ED solid-phase extraction adsorbent. In this paper, Dioctyl phthalate (DOP) was used to encapsulate nano-Fe3O4 and produce a nano-Fe3O4-DOP sorbent based new sorbent was prepared. This was treated with ethylenediamine (ED) in another solvent-free procedure for the formation of a n...
متن کاملPreconcentration of Hg(II) with novel nano-Fe3O4- sorbents prior to determination by CVAAS
A novel, simple, sensitive and effective method has been developed for preconcentration of Hg(II) on nano-Fe3O4-DOP-ED solid-phase extraction adsorbent. In this paper, Dioctyl phthalate (DOP) was used to encapsulate nano-Fe3O4 and produce a nano-Fe3O4-DOP sorbent based new sorbent was prepared. This was treated with ethylenediamine (ED) in another solvent-free procedure for the formation of a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014